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A FAST METHOD FOR SOLVING
A CLASS OF TRI-DIAGONAL LINEAR SYSTEMS
by

Michael A. Malcolm and John Palmer
ABSTRACT

The soiution of linear systems having real, symmetric, diagonally

dominant, tridiagonal coefficient matrices with constant diagonals is

considered. It is proved that the diagonals of the LU decamposition of

the coefficient matrix rapidly converge to full floating-point precision.
It is also proved that the computed LU decomposition converges when
floating-point arithmetic is used and that the limits of the LU diagonals
using floating point are roughly within machine precision of the limits

using real arithmetic. 7This fact is exploited to reduce the number of

floating-point operations required to solve a linear system from 8n-7
to 5n+2k-3 , where k 1is much less than n , the ordsr of the matrix.
If the elements of the sub- and superdiagonals are
operations are needed. The entire LU decamposition tekes k words of
storage, and considerable savings in array subscripting are achieved.
Upper and lower bounds on k are obtained in tefms of the ratio-of thé
coefficient matrix diagonal constants and parameters of the floating-point

number system.

Various generalizations of these results are discussed.

1 , then only Ln+2k-3
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1. Introduction

We will consider the solution of linear algebraic systems having

real symmetric, diagonally dominan*, tridiagonal coefficient matrices
with constant diagonals. This problem occurs frequently in solving certain

kinds of partial differential equations, boundary value problems of ordin-

ary differential equations, and cubic spline interpolation problems,

Consider the coefficient matrix

~ "
a b
b a b
b a b
A = . . L 3
L} [ J .
‘s 2 %
b a
- -

of order n . The usual LU decomposition of A requires n-1 divisions,
n-1 multiplications, and n-l

additions,

The solution of the equations
LUx = d requires an additional n divisions,

2n-2 multiplications, and

2n-2 additions. With the following observation, the entire I decompos-
ition of A

can be stored in k floating-point words, and the solution
of the linear system Ax = d

can be obtained in k divisions, 3n-1 mul-
tiplications, and @2n-2+k additions, where k 1is usually much less than
n . Typically, k is on the order of 10.

Moreover, k can easily be

estimated from the values of a and b and parameters of the floating-

point number system used in the solution. If b =1, then n multiplies

In addition to a smaller operation count, substantial
savings in array indexing are achieved.

can be avoided.
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<, The é&gprithm

Consider the matrix

r -
o 1
1 « 1
l] o 1
B = () « ¢ s
¢« o ¢
. o ¢
l o 1
l o
‘ J

where o = a/b . Note that A = bB . The analysis, as well as the comp-
utation is simplified by considering the coefficient matrix to be B and
the linear system bBx =d . B can be factored into the product IU ,

where

- - - L

using the recurrence relations:
= = = - '=2 )
uy =@, 4y l/ui_1 s U oTa L s 12,5000,

or
u, =a - l/ui-l s, 1=2,...,n, (1)

S ¥ %



Under suitable conditions, to be discussed, the ‘1 converge and
zk = zk+1 = 00al= ‘n = £ to machine accuracy. In the computer, one simply
computes and stores the values of l’i sy i=l,...,k . The solution vector

X can then be computed as follows:

yl=dl’

yi = di - zi-lyi-l T - e y__.L = di - l’yi-l’ i=k+l,...,0 ,

N
n

n wn’

z, = L(yi - Zi+l) s i=n-l,..-,k ) Zi =£i(yi =) Zi+l), i‘:k-l,.-o,l ’

X ‘-b-lzi y i=l,...,n .

[N

5. Convergence of the LU decomposition

We will show that when A is diagonally dominant, the sequences
[ui] and [Li] converge., We will also find an estimate of the rate of
convergence which can be used to determine & value for k .

It is sufficient to show that the sequence [ui] converges, and
for this we assume diagonal dominance, or equivalently, |a| > 2 . The
following theorem is & special case of a theorem of Parter (1962) for

band matrices.

Theorem 1: If |cv| > 2 , then the sequence [ui] converges to u where

a + sgn(a) Vtre- b . (3)
2

Proof: Convergence follows from the fact that the sequence [aui] is bounded

u=

and monotone:

2)
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Lemma 1 (boundness): If |a|>2 , then

ou, >2, i=l,... . (4)

Proof: From (1), u, =@ . Thus ou, =0° > L . Now assume that (4) holds

for some value of i >1 . By (1),

2 2 2
au, o =0 -a/ui >a° -a"/2>2 .

Lemma 1 follows by induction. l

Lemma 2 (monotonicity): If |a| >2 , then

au < ou

i+l i , i+l,... .

Proof: From (1),
_ 1
2rth =g

1

i=2,..l L]
%41

and o o(u, - u

U - Yy) =g 1.1)

It follows from Lemma 1 that the u, must all have the same sign. Thus,

by induction,
a(ui+l -ui)<0 . l

Now, in the limit,
1
u=a-T,
2
or, u ~ou+1l1=0,

Equation (3) is the quadratic formula with the sign of the radical chosen
to avoid a contradiction with Lemma 1., This completes the proof of

Theorem 1.




The following two theorems provide a way to estimate the value of k .

Theorem 2: If |a|>2 , then

t -1- logua
k<1 L (5)
1ogs(o? - - 1)

where B is the floating-point radix, t is the number of digits,

and [g] denotes the smallest integer not less than @ .

Proof: We will first prove the following lemma.

Lemma 3: If |a| >2 , then
2 o 1-1 )
af(ui+l - ui) > -(a” - = - - dellyee. w (6)

Proof: From (1), Lemmas 1 and 2,

1l
@) = ;) 2 e @ g wg NS O ) \
and u:’ = - >0, i=2,.... (8)
%51 ouy -
2 o
Now, au, =& - 5 1=2gwae (9)
i Uil

By Lemma 2, and the fact that u,u> 0

i ]
o o _ ‘
ui <T s i-l’con . H ‘
Thus, au, >02 ES D
i u
1 1l
and < s 122545
T
u
Thus, a(u -u,)> = alu, -u, .), i=2,... .
’ itl T i 2 «a A O KL it i
T R
¥
A
5 3

ln, g:
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Repeated application of this inequality yields

2 o 1-i s _
<ui+l - ui) > (o - o= 1) a(u, - ul), ;)
Since a(112 - ul) = =1 ,

(10)
the Lemma is proved. I
Dividing (6) by au > O and taking absolute values,
u -u ’
i+l i 1 2 o 1l-1i
< ®  omt———— - Y l
, L@ .2y (12)

Requiring the right-side of (11) to be less than Bl't gives a sufficient

condition on i for the convergence of [ui] . Taking logarithms yields
the sufficient condition

t -1- log ou
i>1+ B

2 a ) (12)
loga(cv = T = l)
Thus %k need be no larger than the smallest possible value of i given
by (12). I
Theorem 3: If |a| >2 , then
t -1-1log au
k>|1+ —
log (o - 2)
B
Proof: We will first prove the following lemma,

!
:
Lemma 4: If |o¢|>2 , then %
%
2 1-i %
a(uiﬂ-ui)s-(a -2)°7h, i=l,... . (13) 1
Proof: By Lemma 2 and (1),
3
"’uif‘ml:“ s 2=lp.. %
6 &
g,

ek
R

2




Since, by Lemma 1, dui >0,

o
21, il
1

Substituting into (8) and (9) gives

>, 12,..
i7i-1 o -2
This inequality and (7) and (10) yield Lemma 4. I

Dividing (12) by au > 0 and taking absolute values gives

u

-u I |
e e iR T R (13)

u l—au

Setting the right-side of (13) greater than pl't gives a non-convergence
condition for i , and thus, a lower bound on k . Taking logarithms
yields Theorem 3.

If we denote by X , the upper bound given in Theorem 2, and by
X , the lower bound given in Theorem 3, we have

X<k<K.
In practice, these bounds are very close, Usually K = k=X . The

following table gives values for ¥ , X and k for various values of

a for both single and double precision on the IBM 360.

A




Short Precision Long Precision
(p=16, t=6) (=16, t=14) ‘
o X k X X k K
2.05 18 27 30 ﬁ 46 7 80 |
2.1 16 20 22 41 55 57 i
2.2 1 15 16 35 ko b1
2.3 12 13 13 31 33 34
2.4 1n 11 11 28 29 29
2.5 10 10 10 25 26 26
3.0 8 8 8 19 19 19
4.0 6 6 6 1 14 1k
5.0 5 5 5 12 12 12 ,
6.0 4 4 4 11 11 11 “
7.0 L 4 b 10 10 10

Upper end Lower Bounds (K and X) and
Observed Values for k for the IBM 360




The preceeding theorems characterize the convergence of the
sequence [ui] in the absence of rounding errors. If the computer arith-
metic satisfies certain reasonable rules, then the computed sequence [ﬁi]
also converges monotonically to a limit U which is very close to u .
We will prove this result for o >2 ., A similar argument holds for
o < <2 .

Let @ denote the operation of floating-point divide, and e
denote the operation of floating-point subtraction. For any floating-
point numbers a, b, and c, we will assume the following:

(1) a>0o51a>o0

(11) a>b>1251>1QD>v > 1Qa

(iii) a>b> cOb>cQa

(iv) a>225a©121

(v) a@oO0=2a

Theorem 3: If o>2, and the computer arithmetic satisfies the above

rules, then the computed sequence [Ei] converges monotonically to U and
1-t
) .

u=u+0(B
Proof: i, =a>2 and @, = a@(l@a) . Since a>2, (1) yields
1Qa> 0. From (iii) and (v) we have o> a@ (1Q a); thus u, >u, .
From (i1), 1>1Qa . By (iii) and (iv), a@1Qe>e@®1>1 . So
uy2u, >1.
Now assume &  >& >1. By (i), 1>1Qu >& , . By
(iii) and (iv), a@ (1 / G.k_l) >a@(1/ \’sk) >ae@1>1. So,

u, 2 U > 1 . By induction, the sequence [ui] is bounded and monotone,

Therefore, since there are a finite number of floating-point representations

between @ and 1, the sequence converges to a limit u > 1. Inthe

- 41 0 et




limit, we have
u=a0@(1Qu) .
Following the techniques of Wilkinson (1905), we have

(1+€))(1+1)

for some values of ¢ and T satisfying

lef < 8% ana |n) <™.
So,

=-1

u=a-u 6,

where § = af) - a

¢+ T + e .
Therefore,
i=al(a+6) +V(ers)® - bl

From Theorem 1 we see that

0(s) = o el't)

14 -u

Since v > 1, Theorem Lk nrovides a bound on the relative error in u .

We would like to remark that the algorithm (2) is nothing more than

Gaussian elimination which is known to be very stable for positive definite

systems. The condition number of the matrix B is easily calculated to be

‘Q!+2COS—nT_:_—I—< |d|+2

|| - 2 cos la| - 2

cond(B) = =
n+l

Using the error bound given in Forsythe and Moler (1967):

By =d and (B+E)z =d , then

ly -zl E||
—~—————— < cond(B) —— ,

Izl IIBII

10
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where ||+|| denotes the spectral norm. If E is due to roundoff error

in representing @ , then |[E[|<e = |c:r|Bl't , and
”! = 5” [
< .
izl  ~ ol -2 cos —
~ n+l

4, Generalizations

An important extension of Theorem 1 is that the LU decomposition
will converge even if some of the upper left elements of the matrix are
changed. If a tri-disgonal matrix contains a Toeplitz sub-matrix, then
that portion of the LU decomposition converges. Problems of this sort
occur, for example, with cubic spline interpolation with prescribed deriv-
atives at the ends. This is a result of the following.

Theorem 5: If o >2 and u, =Y where Y has any value except O ,

1

/o, or u_, then the sequence u =a - l/ui-l , i=2,..., converges

W
to u+ here

u_a-i- aa-h

+ 2 ’
and

_a-ae-h

LS 3

(A similar result holds for a < -2 .)

Proof: The nonlinear difference equation, uy =@ - El—' s, can be solved
W i-1

explicitly by using the substitution ui e to produce a linear
i-1

second-order difference equation. For a >0 and u, =Y, the solution

1
is:

11

e A e B i s

b
"
>
3




— A . ﬂ

i+l
u
l+§( =
=)
i + i
u
1 +68 |—

g - VO? - b - Y +u_

Y - u_

—

where

Since a > 2 , the positive quantity
(u_/u +) is less than unity. Convergence follows immediately.

The results we have given for scalars can also be generalized to
matrices.

Theorem 6: If a matrix can be partitioned as

- ]
A B
B A B
@ 5 B A B
- -

where both A and B are symmetric and positive definite, and if the .

eigenvalues of B'lA are greater than 2 in modulus, then the block

Gaussian elimination of ¢ converges.

Proof: Block elimination is equivalent to constructing the sequence of

-1

B, i=1,2,... . But A = PAP' and

matrices U = A, U

1 1= A - BU

i+

B = PPT where A 1is the diagonal matrix of eigenvalues of B'lA . Define

_ PR § _ T _ T
Al = A and Ai+l =4 - Ai . Then Ul = PAlP and if Ui = PAiP then

_ T T Ty-1__T
U,,, = PaP" - PP (PAiP) PP

_ -1,.T _ Y

—P[A-Ai 1P =P P .

The convergence of Ai (as well as the rate of convergence) under the

12
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conditions stated follows from the results for scalars given in Theorems l-S.I
An example of a matrix that satisfies the required conditions for
convergence is the matrix that arises from the five-point finite difference

approximation to Laplace's operatct’ in a rectangle:

A -1
a = -I A -1 .
[ [ ] [ ]
[ [ [ ]
[ ] [ ] [}
where
i ]
L -1
o Yy -1
[} [
A= . " ..
® ® ®
-1
S Rt
- —

However, this method does not appear to be competitive with existing

KNt o ARSI et G

methods for this particular matrix.

-

%. Conclusions

Many of the observations which lecad to the simplification in com-
puling the LU decomposition for tri-diagonal T'oeplitz malrices generalize
to Toeplitz band matrices. Bauer (1955) states that the Cholesky decomp-
osition of band symmetric matrices converges in the sense that each

diagonal of the triangular matrix converges. We know of no rate-of-

it

convergence results for the band case.

An alternate proof of Theorem 1 can be easily constructed by con-

e A

sidering the analytical solution to the difference equation (1). Bounds

13
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on k similar to those given in Theorems 2 and 3, but not quite as close,

can be obtained similarly.
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